Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 68, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625606

RESUMO

The green synthesis of metallic nanoparticles is attributable towards diverse applications in various fields, recently. In this research, we report simple and eco-friendly synthesis of chromium oxide (Cr2O3) nanoparticles using the fruit extract of Phyllanthus emblica as a reducing and capping agent. The absorbance peaks at 350 nm and 450 nm validated the nanoparticle formation in UV-visible spectrum. FTIR spectrum revealed the nature of functional groups. The crystalline properties of nanoparticles were ascertained by XRD analysis. EDX spectrum corroborated the elemental composition of nanoparticles in which chromium and oxygen constituted 68% of total weight. SEM images demonstrated agglomeration of nanoparticles resulting in the formation of large irregularly shaped flakes. Cr2O3 nanoparticles demonstrated excellent antimicrobial properties against 11 bacterial isolates and 1 fungal isolate. The largest inhibition zone (53 mm) was measured against A. baumannii while the smallest inhibition zone (26 mm) was recorded against S. aureus. Minimum inhibitory concentration (MIC) values were < 1 µg/ml for all microbes. However, the synthesized nanoparticles did not reveal synergism with any of the selected antibiotics (FICI values > 1). Nanoparticles possessed potent anti-biofilm powers with maximum (77%) inhibition of E. coli biofilms and minimum (45%) inhibition of S. enterica biofilms. Photocatalytic activity of Cr2O3 nanoparticles was evaluated to determine their efficacy in environmental bioremediation. Outcomes demonstrated degradation of methyl red (84%) but not of methylene blue dye. Furthermore, the Cr2O3 nanoparticles displayed considerable antioxidant (43%) as well as anti-inflammatory (44%) potentials. Hence, the present study accounts for the versatile applications of P. emblica-mediated Cr2O3 nanoparticles which could be pursued for future biomedical and environmental applications.

2.
J Phys Condens Matter ; 36(21)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364261

RESUMO

Off-stoichiometric Cu-Cr-O delafossite thin films with different thicknesses were grown by metal organic chemical vapor deposition on substrates with different coefficients of thermal expansion. Seebeck thermoelectric coefficient and resistivity measurements were performed on the range of 300-850 K. A qualitative change in the temperature-dependence of the resistivity is observed at the temperature corresponding to the deposition process, where the transition from tensile to compressive strain takes place. Arrhenius plots reveal different slopes in these two thermal ranges. The fact that the shift is more pronounced for the thinner films might indicate the induced strain plays a role in changing electrical behaviour. Furthermore, changes below 0.1% in electrical mobility were measured when the strain is induced by mechanical bending.

3.
Nanomaterials (Basel) ; 13(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836343

RESUMO

Cr2O3 thin films were grown on a Si (1 0 0) substrate using Cr(thd)3 and O3 by atomic layer deposition (ALD) at substrate temperatures (TG) from 200 to 300 °C. X-ray amorphous films were deposited at a TG ≤ 225 °C, whereas at higher temperatures (TG ≥ 250 °C), the eskolaite phase was observed in the films. The growth rate of the films increased from 0.003 to 0.01 nm/cycle by increasing TG from 200 to 275 °C. The relatively low growth rate of Cr(thd)3-O3 makes it appropriate for the ALD of precisely controllable solid solution-type ternary-component thin films. The Ti-doped Cr2O3 film showed higher hardness (16.7 GPa) compared with that of the undoped film (12.8 GPa) with similar thickness. The band gap values of the pure Cr2O3 corresponding to the indirect transition model showed no dependence on TG; however, doping the Cr2O3 with Ti decreased its band gap energy value from 3.1 to 2.2 eV.

4.
Membranes (Basel) ; 13(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623790

RESUMO

This work is dedicated to the study of the treatment of multi-walled carbon nanotubes (MWCNTs) with dichromic acid. The dichromic acid was formed by dissolving different concentrations of CrO3 in water. The effect of the concentration of dichromic acid on the change in texture characteristics, elemental composition, defectiveness, graphitization degree, and surface chemistry of MWCNTs was investigated using various analytical techniques, such as transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). Testing of MWCNTs as electrodes for supercapacitors in 3.5 M H2SO4 solution was carried out using cyclic voltammetry. A decrease in the average diameter of CNTs after treatment was found. The EDX and XPS showed that the oxygen content on the surface of MWCNTs increased after treatment with dichromic acid. The formation of Cr2O3 after treatment with dichromic acid was detected by XPS. High angle annular dark field scanning transmission electron microscopy was used to confirm the intercalation of the chromium-containing compound between graphene layers of MWCNTs after treatment with dichromic acid. It was found that two different types of MWCNTs showed diverse behavior after treatment. The highest specific capacitance of the MWCNTs after treatment was 141 F g-1 (at 2 mV s-1) compared to 0.3 F g-1 for the untreated sample.

5.
Nanomaterials (Basel) ; 13(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630931

RESUMO

We aim at developing hexavalent chromium-free coatings for frequently touched decorative parts. Cr(N,O) and multilayered CrN/CrO coatings were deposited by means of reactive magnetron sputtering. All samples presented good adhesion to the substrates enhanced by an epoxy layer designed to enhance PVD coating adhesion. Similar substrates are found in the automotive industry and can be used in appliances where a metallic finish is desired by the consumer. Corrosion behavior was induced, using artificial sweat to simulate long exposure to human touch for 96 h. In potentiodynamic polarization tests, the coatings were revealed to be nobler than the substrate alone. Cr displayed a non-existent passivation region, while gCrN exhibited a quick passivation of the surface and its respective breakdown and several current fluctuations, indicating the occurrence of pitting, which was confirmed by SEM micrography after the corrosion. Regarding EIS results, all films depicted a diminution of impedance modulus (|Z|) after 96 h, which indicates a diminution of corrosion resistance against artificial sweat. Nitride films exhibited the worst anticorrosive features. On the other hand, Cr and CrO exhibited the highest |Z| values. These results are corroborated by low the corrosion rates of both coatings. The equivalent electrical circuit allows us to confirm oxide formation in the outermost layer of the films due to electrolyte/surface interaction, indicating a self-protecting mechanism. Nitride films showed the lowest values and less corrosion resistance, confirming the results obtained in polarization potentiodynamic tests. The coatings developed in this work, namely Cr and CrO, showed a promising corrosion resistance behavior that could endure a lifetime of frequent human touch in various decorative applications either automotive or general appliances.

6.
Biotechnol Bioeng ; 120(8): 2242-2252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337921

RESUMO

The power performance of the bio-electrochemical fuel cells (BEFCs) depends mainly on the energy harvesting ability of the anode material. The anode materials with low bandgap energy and high electrochemical stability are highly desirable in the BEFCs. To address this issue, a novel anode is designed using indium tin oxide (ITO) modified by chromium oxide quantum dots (CQDs). The CQDs were synthesized using facile and advanced pulsed laser ablation in liquid (PLAL) technique. The combination of ITO and CQDs improved the optical properties of the photoanode by exhibiting a broad range of absorption in the visible to UV region. A systematic study has been performed to optimize the amount of CQDs and green Algae (Alg) film grown using the drop casting method. Chlorophyll (a, b, and total) content of algal cultures (with different concentrations) were optimized to investigate the power generation performance of each cell. The BEFC cell (ITO/Alg10/Cr3//Carbon) with optimized amounts of Alg and CQDs demonstrated enhanced photocurrent generation of 120 mA cm-2 at a photo-generated potential of 24.6 V m-2 . The same device exhibited a maximum power density of 7 W m-2 under continuous light illumination. The device also maintained 98% of its initial performance after 30 repeated cycles of light on-off measurements.


Assuntos
Clorófitas , Pontos Quânticos , Pontos Quânticos/química , Eletricidade , Carbono
7.
Materials (Basel) ; 16(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048866

RESUMO

This work presents pulsed UV laser treatment (355 nm, 2 Hz) of TiO2 nanotubes decorated with chromium oxides. The modification was performed in a system equipped with a beam homogenizer, and during the irradiation, the samples were mounted onto the moving motorized table. In such a system, both precisely selected areas and any large area of the sample can be modified. Photoelectrochemical tests revealed photoresponse of laser-treated samples up to 1.37- and 18-fold under the illumination with ultraviolet-visible and visible light, respectively, in comparison to bare titania. Optimal beam energy fluence regarding sample photoresponse has been established. Scanning electron microscopy images, X-ray diffraction patterns, along with Raman and X-ray photoelectron spectra, suggest that the enhanced photoresponse results from changes solely induced in the layer of chromium oxides. It is believed that the results of the present work will contribute to a wider interest in laser modification of semiconductors exhibiting improved photoelectrochemical activity.

8.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985876

RESUMO

Herein, we carefully investigated the Fe3+ doping effects on the structure and electron distribution of Cr2O3 nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of the unit cell. We found that as Fe3+ replaces Cr in the Cr2O3 lattice, it caused a higher interaction between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe-O1 bond length followed by an opposite effect for the Cr/Fe-O2 bonds. Our results also suggest that the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe d states. The Cr2O3 and Fe-doped Cr2O3 nanoparticles behave as Mott-Hubbard insulators due to their band gap being in the d-d gap, and Cr 3d orbitals dominate the conduction band. These findings suggest that the magnitude and the character of the electronic density near the O atom bonds in Cr2O3 nanoparticles are modulated by the Cr-Cr distances until its stabilization at the induced quasi-equilibrium of the Cr2O3 lattice when the Fe3+ doping values reaches the saturation level range.

9.
Chemistry ; 29(24): e202204058, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36764932

RESUMO

The hydrogen evolution reaction (HER) of Rh nanoparticles (RhNP) coated with an ultrathin layer of Cr-oxides (CrOx ) was investigated as a model electrode for the Cr2 O3 /Rh-metal core-shell-type cocatalyst system for photocatalytic water splitting. The CrOx layer was electrodeposited over RhNP on a transparent conductive fluorine-doped tin oxide (FTO) substrate. The CrOx layer on RhNP facilitates the electron transfer process at the CrOx /RhNP interface, leading to the increased current density for the HER. Impedance spectroscopic analysis revealed that the CrOx layer transferred protons via the hopping mechanism to the RhNP surface for HER. In addition, CrOx restricted electron transfer from the FTO to the electrolyte and/or RhNP and suppressed the backward reaction by limiting oxygen migration. This study clarifies the crucial role of the ultrathin CrOx layer on nanoparticulate cocatalysts and provides a cocatalyst design strategy for realizing efficient photocatalytic water splitting.

10.
J Nutr Sci ; 12: e18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843980

RESUMO

The rat model can be used to assess ileal protein digestibility rapidly and in first intention, but no standardised method exists. Our objective was to compare methods to assess protein digestibility, depending on collection site (ileum/caecum) and use of a non-absorbable marker. A meal containing either casein, gluten or pea protein and chromium oxide as non-absorbable marker was given to male Wistar rats and the entire digestive content was collected 6 h later. Total chromium recovery was incomplete and variable, depending on protein source. We observed no significant difference in digestibility between the methods for any of the protein sources tested. Although none of the methods tested is optimal, our results suggest that caecal digestibility can be used as a proxy of ileal digestibility in rats without using a non-absorbable marker. This simple method makes it possible to evaluate protein digestibility of new alternative protein sources for human consumption.


Assuntos
Aminoácidos , Íleo , Humanos , Ratos , Masculino , Animais , Aminoácidos/metabolismo , Ratos Wistar , Íleo/metabolismo , Digestão , Ceco/metabolismo
11.
J Colloid Interface Sci ; 629(Pt B): 501-510, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174293

RESUMO

Applications of urea oxidation reaction (UOR) in various sustainable energy-conversion systems are greatly hindered by its slow kinetics. Herein, we demonstrate an in-situ confined synthesis method that produces amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets (Ni/NiO@CrOx) with fast reaction kinetics towards UOR. The confinement effect of the in-situ generated CrOx overlay contributes to ultrafine Ni/NiO nanoparticles, bringing about rich Ni/NiO and NiO/CrOx interfaces. In-situ Raman and electrochemical characterization show that both CrOx and metallic Ni can promote the formation of the NiOOH species and the electron transfer, leading to high intrinsic activity and fast reaction kinetics. At 1.40 V vs. reversible hydrogen electrode, the Ni/NiO@CrOx delivers a current density of 275 mA cm-2, which is about 2.6 and 6.1 times as large as those of the NiO@CrOx and NiO, respectively. In addition, the protective effect of the CrOx overlay leads to robust working stability towards UOR. Further, the Ni/NiO@CrOx nanosheets are used as bifunctional catalysts for overall urea splitting, and a small electrolysis cell voltage of 1.44 V is needed to reach the benchmark current density of 10 mA cm-2.

12.
Front Pharmacol ; 13: 1008182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313367

RESUMO

The conventional chemical methods of nanoparticles synthesis have been effectively replaced by nanoparticle synthesis mediated by plants. The current study describes the environmental friendly synthesis of chromium oxide nanoparticles (Cr2O3 NPs) using Erythrophleum guineense plant extract. The synthesis of Cr2O3 NPs was validated by UV/VIS spectroscopy, Energy Dispersive X-Ray (EDX), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) studies. The appearance of the Sharpe peak at 460 nm in the UV/Vis spectrum and the colour change caused by surface plasma resonance confirmed the formation of Cr2O3 NPs. The EDX spectrum of Cr2O3 nanoparticles revealed the presence of carbon, oxygen, and chromium, while SEM analysis revealed an irregular round morphology (with a size below 400 nm). In addition, XRD studies suggested their crystalline nature by the characteristic peaks at 34° and 36° and 42° (2Ɵ), respectively. The green synthesized Cr2O3 NPs showed promise as in-vitro cholinesterase inhibitor at tested concentrations (62.5-1,000 µg/ml), with IC50 values of 120 and 100 µg/ml against Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE), respectively. The results suggested that the green synthesized Cr2O3 NPs could be used in the future to stop enzyme from working and for other biological activities.

13.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079341

RESUMO

The paper presents and discusses questions on structure formation during the sintering process of Cr2O3-based composites using the hot pressing method, when a chemical reaction between the components takes place. The task was difficult because Cr2O3 decomposes when sintered at temperatures above 1300 °C. The proposed novel method allowed for interaction between aluminum and chromia, thus avoiding the decomposition of the latter. Here, ultrafine aluminum powder played the role of the active agent forming a liquid phase and reacting with Cr2O3. The appearance of the solid solutions of (Cr,Al)2O3 with different stoichiometry of Cr and Al depended on the aluminum content in the initial mixture. The solid solution significantly strengthened boundaries between composite phases, resulting in the composite material of high fracture toughness between 5 and 7 MPa m½ and bending strength of ca. 500 MPa. The best mechanical properties exhibited the cermet with 22 wt.% of the restored chromium.

14.
Nanomaterials (Basel) ; 12(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014735

RESUMO

Direct current (DC) and radio frequency (RF) magnetron sputtering methods were selected for conducting the deposition of structural materials, namely ceramic and metallic co-depositions. A total of six configurations were deposited: single thin layers of oxides (Cr2O3, SiO2) and co-deposition configurations (50:50 wt.%) as structural materials (W, Be)-(Cr2O3, SiO2), all deposited on 304L stainless steel (SS). A comprehensive evaluation such as surface topology, thermal desorption outgassing, and structural/chemical state was performed. Moreover, mechanical characterization evaluating properties such as adherence, nano indentation hardness, indentation modulus, and deformation relative to yielding, was performed. Experimental results show that, contrary to SiO2 matrix, the composite layers of Cr2O3 with Be and W exhibit surface smoothing with mitigation of artifacts, thus presenting a uniform and compact state with the best microstructure. These results are relevant in order to develop future dense coatings to be used in the fusion domain.

15.
Proc Natl Acad Sci U S A ; 119(22): e2120716119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605120

RESUMO

SignificanceFor oxide catalysts, it is important to elucidate and further control their atomic structures. In this work, well-defined CrO2 bilayer islands and Cr2O7 dinuclear clusters have been grown on Au(111) and unambiguously identified by scanning tunneling microscopy and theoretical calculations. Upon cycled redox treatments, the two kinds of oxide nanostructures can be reversibly transformed. It is interesting to note that both Cr oxides do not exist in bulk but need to be stabilized by the metal surface and the specific environment. Our results suggest that both redox atmosphere and interface confinement effects can be used to construct an oxide nanostructure with the specific chemical state and structure.

16.
ACS Appl Mater Interfaces ; 14(12): 14474-14481, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290027

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR), an alternative method of nitrogen fixation and conversion under ambient conditions, represents a promising strategy for tackling the energy-intensive issue. The design of high-performance electrocatalysts is one of the key issues to realizing the application of NRR, but most of the current catalysts rely on the use of crystalline materials, and shortcomings such as a limited number of catalytic active sites and sluggish reaction kinetics arise. Herein, an amorphous metal oxide catalyst H-CrOx/C-550 with hierarchically porous structure is constructed, which shows superior electrocatalytic performance toward NRR under ambient conditions (yield of 19.10 µg h-1 mgcat-1 and Faradaic efficiency of 1.4% at -0.7 V vs a reversible hydrogen electrode, higher than that of crystalline Cr2O3 and solid counterparts). Notably, the amorphous metal oxide obtained by controlled pyrolysis of metal-organic frameworks (MOFs) possess abundant unsaturated catalytic sites and optimized conductivity due to the controllable degree of metal-oxygen bond reconstruction and the doping of carbon materials derived from organic ligands. This work demonstrates MOF-derived porous amorphous materials as a viable alternative to current electrocatalysts for NH3 synthesis at ambient conditions.

17.
J Phys Condens Matter ; 34(17)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35084366

RESUMO

Epitaxial clusters of chromium and chromium-vanadium oxides are studied by tunnel magneto-resistivity measurements, x-ray absorption spectrometry and circular magnetic circular dichroism. They turn out to carry a small magnetic moment that follows a super-paramagnetic behavior. The chromium ion contribution to this magnetization is mainly due to an original magnetic Cr2O3-like phase, whereas usual Cr2O3is known to be anti-ferromagnetic in the bulk. For mixed clusters, vanadium ions also contribute to the total magnetization and they are coupled to the chromium ion spins. By measuring the dichroic signal at different temperatures, we get insight into the possible spin configurations of vanadium and chromium ions: we propose that the magnetic dipoles observed in the clusters assembly could be related to ionic spins that couple at a very short range, as for instance in short one-dimensional spins chains.

18.
Adv Funct Mater ; 32(38)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36824209

RESUMO

Focused-ion-beam machining is a powerful process to fabricate complex nanostructures, often through a sacrificial mask that enables milling beyond the resolution limit of the ion beam. However, current understanding of this super-resolution effect is empirical in the spatial domain and nonexistent in the temporal domain. This article reports the primary study of this fundamental tradespace of resolution and throughput. Chromia functions well as a masking material due to its smooth, uniform, and amorphous structure. An efficient method of in-line metrology enables characterization of ion-beam focus by scanning electron microscopy. Fabrication and characterization of complex test structures through chromia and into silica probe the response of the bilayer to a focused beam of gallium cations, demonstrating super-resolution factors of up to 6 ± 2 and improvements to volume throughput of at least factors of 42 ± 2, with uncertainties denoting 95% coverage intervals. Tractable theory models the essential aspects of the super-resolution effect for various nanostructures. Application of the new tradespace increases the volume throughput of machining Fresnel lenses by a factor of 75, enabling the introduction of projection standards for optical microscopy. These results enable paradigm shifts of sacrificial masking from empirical to engineering design and from prototyping to manufacturing.

19.
Trop Anim Health Prod ; 53(6): 539, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34761279

RESUMO

We executed two studies to investigate time to reach steady state (EXP1) and diurnal variations (EXP 2) of markers, in order to recommend spot fecal sampling in sheep. Eight lambs were used in EXP 1. Each animal has received titanium dioxide (TDOX) and chromium oxide (COX) together during two periods of 15 days. Thirty sheep of the Santa Ines breed were used in EXP 2. Fecal samples were taken with 2-h intervals in the last 5 days of each period, simultaneously to total feces collection. A sine-cosine model was used to evaluate EXP 2, and broken-line model for EXP 1. TDOX could complete its recovery after 2.3 days, and it could accurately promote fecal estimates after 3 days of marker infusion. COX could stabilize after 4.1 days, and it could promote fecal estimates after 5 days. However, estimated fecal excretion became similar to total feces output after 3 days for TDOX and after 6 days for COX. For both markers, a total 6 days of adaptation period could be summed to a 3-day collection period. Spot sampling was similar to total fecal output at 6:00 to 8:00 on morning and between 5:00 and 7:00 on afternoon for TDOX. Also, COX could be sampled at 6:00 to 8:00 on morning and between 5:00 and 7:00 on afternoon. External markers could be evaluated from 3-day fecal spot collection. Fecal collections could be made before the morning feeding, and around 6 p.m. for both markers.


Assuntos
Fezes , Animais , Biomarcadores , Ovinos
20.
Environ Sci Pollut Res Int ; 28(35): 48517-48534, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33907960

RESUMO

This research was intended to evaluate the antidiabetic effect of single or combined administration of nanoparticles of zinc oxide nanoparticles (ZnONPs), chromium oxide nanoparticles (Cr2O3NPs), and selenium nanoparticles (SeNPs), on genetic and metabolic insult in fructose/streptozotocin diabetic rat model. Type 2 diabetes mellitus was induced by feeding sixty adult male albino rats with a high fructose diet accompanied by a single i.p. injection of streptozotocin (STZ). The rats were divided into 6 groups (10 rats/each) and the doses of nanoparticles were 10 mg/kg b.wt for ZnONPs, 1 mg/kg b.wt for Cr2O3, and 0.4 mg/kg b.wt for SeNPs. The results displayed that diabetes significantly decreased bodyweight, serum insulin, C-peptide, adiponectin levels, erythrocyte glutathione peroxidase, serum superoxide dismutase activities, high-density lipoprotein cholesterol (HDL-C), and total antioxidant capacity while causing a substantial increase in serum glucose, C-reactive protein, atherogenic index, HOMA-IR, malondialdehyde, lipid profile, interleukin-6 levels, and liver function and kidney function parameters. Furthermore, the findings showed a decrease in insulin receptor substrate-1 (IRS-1) hepatic mRNA expression level and peroxisome proliferator-activated receptor (PPAR-γ) adipocyte mRNA expression level in type 2 diabetic rats. DNA damage was confirmed by performing the comet assay. Moreover, histological observation of pancreatic and hepatic tissues was performed, which were consistent with the biochemical results. The present study confirmed that oral administration of ZnONPs, Cr2O3NPs, SeNPs, and their mixture improved all the biochemical and genetic parameters toward normal levels and ameliorated the diabetic consequences that were manifested by restricting cellular DNA damage which maintaining pancreatic and hepatic tissues from oxidative damage. The best reported antidiabetic effect was observed in the mixture administered group.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanopartículas , Selênio , Óxido de Zinco , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Compostos de Cromo , Dano ao DNA , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Frutose/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo , Ratos , Selênio/metabolismo , Estreptozocina/metabolismo , Óxido de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...